Modern Approaches for Transcriptome Analyses in Plants.

Abstract

The collection of all transcripts in a cell, a tissue, or an organism is called the transcriptome, or meta-transcriptome when dealing with the transcripts of a community of different organisms. Nowadays, we have a vast array of technologies that allow us to assess the (meta-)transcriptome regarding its composition (which transcripts are produced) and the abundance of its components (what are the expression levels of each transcript), and we can do this across several samples, conditions, and time-points, at costs that are decreasing year after year, allowing experimental designs with ever-increasing complexity. Here we will present the current state of the art regarding the technologies that can be applied to the study of plant transcriptomes and their applications, including differential gene expression and coexpression analyses, identification of sequence polymorphisms, the application of machine learning for the identification of alternative splicing and ncRNAs, and the ranking of candidate genes for downstream studies. We continue with a collection of examples of these approaches in a diverse array of plant species to generate gene/transcript catalogs/atlases, population mapping, identification of genes related to stress phenotypes, and phylogenomics. We finalize the chapter with some of our ideas about the future of this dynamic field in plant physiology.

Publication
Advances in experimental medicine and biology
Diego Mauricio Riaño-Pachón
Diego Mauricio Riaño-Pachón
Assistant Professor (MS3.2) in Computational, Evolutionary and Sistems Biology

I am a computational biologist/bioinformatician at the University of São Paulo, Campus Luiz de Queiroz (Piracicaba/SP, Brazil).